Original article:

A Study of assessment of Dyslipidemia in undialysed chronic kidney disease patients

¹Dr Yad Ram Yadav, ²Dr. Khushboo Agarwal, ³Dr. Romil Singh

¹Assistant Professor, Department of Medicine, J L N Medical College, Ajmer, Rajasthan ²Senior Resident, Department of Medicine, J L N Medical College Ajmer, Rajasthan ³MGMC Jaipur, Rajasthan Corresponding Author- Dr. Ravi Kumar Bansal

Abstract:

Introduction- Patients with chronic kidney disease (CKD) are at an increased risk for cardiovascular disease and have a higher prevalence of hyperlipidaemia (or dyslipidaemias) than the general population. Therefore, it is important to screen all patients with CKD for dyslipidaemias and treat them appropriately as they are considered "a very high-risk" group for CVD.

Material & method- We studied lipid profile status and Biochemical markers of renal function in undialysed chronic kidney disease patients and healthy controls. 25 cases and similar number of age and sex matched control are included in study.

Conclusion- In our study the lipid abnormality found was Increased Triglyceride, serum cholesterol, VLDL and Decreased HDL which was statistically significant.

Keywords: chronic kidney disease, Hemodialysis, Lipid profile.

INTRODUCTION

Patients with chronic kidney disease (CKD) are at an increased risk for cardiovascular disease and have a higher prevalence of hyperlipidaemia (or dyslipidaemias) than the general population¹⁻². In patients with pre-existing CVD, the presence of CKD is associated with an increased risk of recurrent cardiovascular events³. The majority (58%) of patients die from cardiovascular causes, making CVD the leading cause of death in patients with CKD⁴. Indeed, even mild renal insufficiency has been shown to be associated with increased rates of cardiovascular events⁵⁻⁶. Furthermore, patients on dialysis have 10 to 20 times higher cardiovascular mortality rates than the general population⁷. Therefore, it is important to screen all patients with CKD for dyslipidaemias and treat them appropriately as they are considered "a very high-risk" group for CVD.

As reduced GFR is by itself associated with hyperlipidaemia, the strong and independent correlation between proteinuria and reduced GFR also increases the risk of hyperlipidaemia and proteinuria⁸. Conversely, proteinuria has an inverse correlation with the level of HDL cholesterol⁹. Hyperlipidaemia and Progression of Kidney Disease It has long been suggested that hyperlipidaemia could cause renal injury and contribute to the progression of renal disease¹⁰. Most studies have been small and a meta-analysis of these studies to assess the effect of lipid reduction on the progression of renal disease has shown that lipid reduction may preserve GFR and reduce proteinuria¹¹. More

www.ijbamr.com P ISSN: 2250-284X , E ISSN : 2250-2858

Indian Journal of Basic and Applied Medical Research; December 2019: Vol.-9, Issue- 1, P. 410-416

recent studies have shown that HMG- CoA reductase inhibitors (statins) can reduce proteinuria and slow the decline in renal function¹¹⁻¹⁴.

MATERIAL AND METHODS

The study was hospital based case control observational study conducted in upgraded department of medicine JLN Medical College Ajmer. We studied lipid profile status and Biochemical markers of renal function in undialysed chronic kidney disease patients and healthy controls. 25 cases and similar number of age and sex matched control are included in study. The chronic kidney disease patients visiting medicine OPD and medicine ward were screened for lipid profile. Subjects were included in study after taking informed consent.

INCLUSION CRITERIA -

Patients of age ≥ 18 years having established chronic kidney disease and not on dialysis.

EXCLUSION CRITERIA

- 1. Age <18 years
- 2. Patients on lipid lowering drug
- 3. Patients of thyroid disorder
- 4. Pregnancy
- 5. Any History of dialysis
- 6. Diabetes mellitus
- 7. Obese
- 8. Alcoholic
- 9. Smoker
- 10. Refusal to give consent

GFR calculated by-

Estimated GFR (ml/min per $1.73m^2$) = $1.86 \text{ x} (\text{cr}/88.4)^{-1.154} \text{ x} (\text{Age})^{-0.203}$

(multiply by 0.742 for female)

Informed consent was obtained from all study participants and ethics committee of our tertiary care hospital approved the study.

Data Analysis: Relationship between Serum Lipid Profile and Biochemical Markers of renal function is determined by using -

- 1. Chi-square test
- 2. Coefficient of correlation

OBSERVATION AND DISCUSSION

Table 1Distribution According to Age

Group	Ν	Mean	SD	Minimum	Maximum	P Value LS
case	25	43.96	14.273	18	66	
control	25	45.04	13.945	20	70	0.788 NS

All Cases and controls are age matched.

Table 2 Distribution According to Sex

Sex	Cases		Controls	Total	
	No	%	No	%	No
F	8	32	8	32	16
М	17	68	17	68	34
Total	25	100	25	100	50

All cases and controls are sex matched.

. Table No. 3Distribution of the S. UREA (mg/dl) among the Groups

S.UREA(mg/dl)							
GROUP	Ν	Mean	SD	Minimum	Maximum	P Value LS	
Case	25	132.37	79.338	45	315		
Control	25	26.04	8.590	14	44	<0.001S	

The mean level of S. Urea in cases was significantly higher than controls (p<0.001).

Table No. 4Distribution of the S.Creatinine (mg/dl) Among the Groups

S CREATININE(mg/dl)								
GROUP	Ν	Mean	SD	Minimum	Maximum	P Value LS		
Case	25	3.272	0.9563	1.7	5.2			
Control	25	0.757	0.2144	0.4	1.1	<0.001S		

The mean level of S.Creatinine in Case was significantly higher than controls (p<0.001).

Table No. 5Distribution of the Mean TG (mg/dl) among the groups

TG (mg/dl)						
Group	Ν	Mean	SD	Minimum	Maximum	P Value LS
Case	25	230.92	72.808	120	380	
Control	25	115.92	29.433	66	167	<0.001S

The mean level of TG in cases was significantly higher than controls (p<0.001).

Table No.	6 Distribution	of the S.TG	(mg/dl) Amo	ong the Groups
			\ 0 /	

TG (mg/dl) ²	Case		Control		Total	
	No	%	No	%	Total	
Abnormal (>150)	20	80	1	4	21	
Normal (≤150)	5	20	24	96	29	
Total	25	100	25	100	50	

Proportion of the cases of abnormal S.TG level was significantly more in cases as compared to controls (p<0.001).

Table No. 7 Distribution of the HDL (mg/dl) among the groups

HDL(mg/dl)						
Group	N	Mean	SD	Minimum	Maximum	P Value LS
Case	25	30.84	5.444	20	42	0.001S
Control	25	37.36	4.508	30	44	

The mean level of HDL in Cases was significantly lower than controls (p<0.001).

	Case		Control		
HDL (mg/dl)	No	%	No	%	Total
Low (<40mg/dl)	24	96	15	60	39
Normal (≥40mg/dl)	1	4	10	40	11
Total	25	100	25	100	50

Proportion of the cases low HDL level was significantly more in cases as compared to controls (p<0.01).

Table No. 8 Distribution of the VLDL (mg/dl) Among the Groups

VLDL(mg/dl)								
Groups	N	Mean	Std. Deviation	Minimum	Maximum	P Value LS		
Case	25	31.311	18.83	10.0	105.0			
Control	25	22.200	4.96	15.0	31.0	0.024 S		

The mean level of VLDL in Case was significantly higher than controls (p=0.024).

www.ijbamr.com P ISSN: 2250-284X, E ISSN: 2250-2858

T. CHOLESTEROL (mg/dl)							
Group	Ν	Mean	SD	Minimum	Maximum	P Value LS	
Case	25	295.04	96.29	100	429	0.001 S	
Control	25	158.40	38.09	111	250		

Table No. 9 Distribution of the T. Cholesterol (mg/dl) among the groups

The mean level of T. Cholesterol in cases was significantly higher than controls (p=0.001).

T CHOLESTEROL (mg/dl)2	Case		Control		Total
1. CHOLESTEROL (mg/m)2	No	%	No	%	No
Abnormal(>200mg/dl)	19	76	3	12	22
Normal (<200mg/dl)	6	24	22	88	28
Total	25	100	25	100	50

Proportion of the cases of high T. Cholesterol level was significantly more in cases as compared to controls (p<0.001).

Table No.	10 Distribution	n of the T	. LDL (mg/dl)	among the	groups
	To Distributio	in or the r	• ப்பப் (mg/ur/	among the	groups

LDL(mg/dl)							
Groups	Ν	Mean	SD	Minimum	Maximum	P Value LS	
Case	25	59.96	31.759	26	129		
Control	25	75.08	25.722	48	168	0.105 NS	

There was no significant difference in mean LDL levels between cases and controls (p=0.105).

LDL(mg/dl)	Case		Control		Total
2222(g,)	No	%	No	%	No
Abnormal (>!30mg/dl)	0	0	1	4	1
Normal (<130mg/dl)	25	100	24	96	49

No significant difference was observed according to proportion of the cases in LDL (mg/dl) (p=1.00).

eGFR (ml/min) per 1.73m ²							
Group	Ν	Mean	SD	Minimum	Maximum	P Value LS	
Case	25	27.10	8.80	14.9	44.1		
Control	25	143.72	41.09	90.9	218.0	0.001 S	

Table No. 11 Distribution eGFR (ml/min) per 1.73m² among the groups

Mean eGFR (ml/min) per 1.73 m² was significantly higher in controls as compared to cases (p=0.001).

CONCLUSION

Patients with CKD are at high risk of developing cardiovascular disease and they have a higher prevalence of dyslipidaemias compared to the general population. Most CKD patients do not develop kidney failure but die as a result of CVD. It is recognised that CVD begins in the early stages of CKD. Therefore, it is important not only to identify these patients early but also to treat their dyslipidaemias intensively before they develop end-stage renal disease. Most patients will require lifestyle modification and lipid-lowering therapy (statins). In our study the lipid abnormality found was Increased Triglyceride, serum cholesterol, VLDL and Decreased HDL which was statistically significant.

REFERENCES:

- Culleton BF, Larson MG, Wilson PW, Evans JC, Parfrey PS, Levy D. Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int 1999;56:2214-9.
- 2. Kasiske BL. Hyperlipidemia in patients with chronic renal disease. Am J Kidney Dis 1998;32:S142-S156.
- Weiner DE, Tighiouart H, Stark PC, Amin MG, MacLeod B, Griffith JL, et al. Kidney disease as a risk factor for recurrent cardiovascular disease and mortality. Am J Kidney Dis 2004;44:198-206.
- 4. Shulman NB, Ford CE, Hall WD, Blaufox MD, Simon D, Langford HG, et al; The Hypertension Detection and Followup Program Cooperative Group. Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. Hypertension 1989;13(Suppl):I80-I93.
- 5. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003;108:2154-69.
- Mann JF, Gerstein HC, Pogue J, Bosch J, Yusuf S. Renal insufficiency as a predictor of cardiovascular outcomes and the impact of ramipril: the HOPE randomized trial. Ann Intern Med 2001;134:629-36.
- Foley RN, Parfrey PS, Sarnak MJ. Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol 1998;9(12 Suppl): S16-S23.

Indian Journal of Basic and Applied Medical Research; December 2019: Vol.-9, Issue- 1, P. 410-416

- Keane WF, Eknoyan G. Proteinuria, albuminuria, risk, assessment, detection, elimination (PARADE): a position paper of the National Kidney Foundation. Am J Kidney Dis 1999;33:1004-10.
- Bianchi S, Bigazzi R, Campese VM. Microalbuminuria in essential hypertension: significance, pathophysiology, and therapeutic implications. Am J Kidney Dis 1999;34:973-95.
- Moorhead JF, Chan MK, El-Nahas M, Varghese Z. Lipid nephrotoxicity in chronic progressive glomerular and tubulointerstitial disease. Lancet 1982;2:1309-11.
- Fried LF, Orchard TJ, Kasiske BL. Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 2001;59: 260-9.
- Tonelli M, Moye L, Sacks FM, Cole T, Curhan GC; Cholesterol and Recurrent Events Trial Investigators. Effect of pravastatin on loss of renal function in people with moderate chronic renal insufficiency and cardiovascular disease. J Am Soc Nephrol 2003;14:1605-13.
- Bianchi S, Bigazzi R, Caiazza A, Campese VM. A controlled, prospective study of the effects of atorvastatin on proteinuria and progression of kidney disease. Am J Kidney Dis 2003;41:565-70. Erratum in: Am J Kidney Dis 2004;43:193.
- Lee TM, Su SF, Tsai CH. Effect of pravastatin on proteinuria in patients with well-controlled hypertension. Hypertension 2002;40:67-73.